Use Smartphone, Not Needle, To Check For Anemia

Updated on

Use Smartphone, Not Needle, To Check For Anemia by Jennifer Langston-Washington

A new screening tool called HemaApp uses a smartphone camera to estimate hemoglobin concentrations and screen for anemia.

In the developing world, anemia–a blood condition exacerbated by malnutrition or parasitic disease–is a staggeringly common health problem that often goes undiagnosed.

In hospitals everywhere, children and adults with leukemia and other disorders require frequent blood draws to determine if they need blood transfusions.


In both cases, doctors are interested in measuring hemoglobin, a protein found in red blood cells. To obtain this basic measurement, blood has to be drawn with a needle or intravenous line, or hundreds to thousands of dollars have to be spent on a specialized machine that measures hemoglobin non-invasively.

‘One ubiquitous platform’

In an initial trial of 31 patients, and with only one smartphone modification, HemaApp performed as well as the Masimo Pronto, the more expensive Food and Drug Administration-approved medical device that non-invasively measures hemoglobin by clipping a sensor onto a person’s finger.

“In developing countries, community health workers have so much specialized equipment to monitor different conditions that they literally have whole bags full of devices,” says lead author Edward Wang, an electrical engineering doctoral student at the University of Washington. “We are trying to make these screening tools work on one ubiquitous platform—a smartphone.”

By shining light from the phone’s camera flash through the patient’s finger, HemaApp analyzes the color of his or her blood to estimate hemoglobin concentrations. The researchers tested the app under three different scenarios: using the smartphone camera’s flash alone, in combination with a common incandescent lightbulb, and with a low-cost LED lighting attachment.

The additional illumination sources tap into other parts of the electromagnetic spectrum that have useful absorption properties but that aren’t currently found on all smartphone cameras.

Photo app screens babies for jaundice

“New phones are beginning to have more advanced infrared and multi-color LED capabilities,” says senior author Shwetak Patel, professor of computer science & engineering and electrical engineering. “But what we found is that even if your phone doesn’t have all that, you can put your finger near an external light source like a common lightbulb and boost the accuracy rates.”

Testing the app

In the initial trials, HemaApp’s hemoglobin measurements using a smartphone camera alone had a 69 percent correlation to a patient’s Complete Blood Count (CBC) test, a 74 percent correlation when used under a common incandescent light bulb and an 82 percent correlation using a small circle of LED lights that can snap onto the phone.

For comparison, the Masimo Pronto’s measurements had an 81 percent correlation to the blood test.

The mobile app is not intended to replace blood tests, which remain the most accurate way to measure hemoglobin. But the early test results, from patients that ranged in age from 6 to 77 years old, suggest HemaApp can be an effective and affordable initial screening tool to determine whether further blood testing is warranted. When used to screen for anemia, HemaApp correctly identified cases of low hemoglobin levels 79 percent of the time using just the phone camera, and 86 percent of the time when aided with some light sources.

Fewer blood draws

“Anemia is one of the most common problems affecting adults and children worldwide,” says coauthor Doug Hawkins, a pediatric cancer specialist with UW Medicine, Seattle Children’s Hospital and Seattle Cancer Care Alliance. “The ability to screen quickly with a smartphone-based test could be a huge improvement to delivering care in limited-resource environments.”

Coauthor Terry Gernsheimer, a hematologist and transfusion medicine specialist, says her staff frequently has to draw blood from leukemia or surgical patients solely to measure hemoglobin levels and determine if they need transfusions.

“Every time we draw blood, we are invading the patient in some way, shape or form. If we don’t already have a line in, we are sticking a needle into their arm, which involves discomfort and infection risk, albeit low,” she says. “It would be really nice to not have to perform a procedure every time we want to answer that question.”

At home test diagnoses anemia in 60 seconds

HemaApp bombards a patient’s finger with different wavelengths of light and infrared energy and creates a series of videos. By analyzing how colors are absorbed and reflected across those wavelengths, it can detect concentrations of hemoglobin and other blood components like plasma.

To ensure that it works on different skin tones and body masses, the team developed processing algorithms that use the patient’s pulse to distinguish between the properties of the patient’s blood and the physical characteristics of his or her finger.

Next research steps include wider national and international testing of HemaApp, collecting more data to improve accuracy rates, and using smartphones to try to detect abnormal hemoglobin properties that could help screen for sickle cell disease and other blood disorders.

“We’re just starting to scratch the surface here,” Patel says. “There’s a lot that we want to tackle in using phones for non-invasively screening disease.”

Researchers will present a paper on the technology on September 15 at the Association for Computing Machinery’s 2016 International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2016) in Germany.

The Washington Research Foundation funded the work.

Source: University of Washington

Original Study

Leave a Comment