$52 Billion Market for EV Battery Cell And Pack Materials Forecast

0
$52 Billion Market for EV Battery Cell And Pack Materials Forecast
<a href="https://pixabay.com/users/andreas160578/">andreas160578</a> / Pixabay

$52 Billion Market for EV Battery Cell and Pack Materials Forecast by IDTechEx

Get Our Activist Investing Case Study!

Get the entire 10-part series on our in-depth study on activist investing in PDF. Save it to your desktop, read it on your tablet, or print it out to read anywhere! Sign up below!

Q3 2020 hedge fund letters, conferences and more

EVs Demand For Battery Cell and Pack

The lithium-ion batteries in electric vehicles (EVs) present very different material demands at the cell- and pack-level compared with the internal-combustion engine (ICE) vehicles they replace. Whilst ICE drivetrains heavily rely on aluminum and steel alloys, Li-ion batteries utilize a lot of materials such as nickel, cobalt, lithium, copper, insulation, thermal interface materials, and much more at a cell- and pack-level. The markets for these materials will see a rapid increase in demand that would not have been present without the take-off of electric vehicle markets.

Schafer Cullen Capital Q4 Letter: Value Stocks Could Be Set For A Recovery As Earnings Grow

Market Value StocksValue stocks have outperformed growth investments in the last three months, setting a trend that could be present for the next few years, that's according to Jim Cullen, the Chairman, and CEO of Schafer Cullen Capital Management. Q4 2020 hedge fund letters, conferences and more According to Cullen's latest "Market Letter," a copy of which Read More


The new report from IDTechEx, “Materials for Electric Vehicle Battery Cells and Packs 2021-2031”, identifies and analyzes trends in the materials used for the assembly and production of battery cells and battery packs in the EV market. The report also provides granular market forecasts for over 20 key material categories in terms of demand in tonnes in addition to market value.

Battery Material

Improvements to energy density drive several materials market share. Source: IDTechEx, “Materials for EV Battery Cells and Packs 2021-2031” (www.IDTechEx.com/EVBattMat)

Battery Cell Materials

OEMs are changing the way they make batteries. Improvements to energy density are one key consideration but also the sustainability of the materials used. Many materials involved have questionable mining practices or volatile supply chains. One such material is cobalt, which in addition to being very expensive, has its supply and mining confined mostly to China and the Democratic Republic of Congo. As a result, OEMs are trending towards higher nickel cathode chemistries like NMC 622 or NMC 811 in some new models.

Up until 2018, the Chinese electric car market was predominately using LFP cathodes. This has now transitioned such that, as of 2019, only 3 % of cars utilized LFP batteries. However, Tesla has now introduced the LFP Model 3 made in China, which could upset this trend. Additionally, LFP is used extensively for markets like Chinese electric buses. Despite the reduction in market share of materials like cobalt, the rapidly increasing market for electric vehicles will drive demand for cobalt and many other materials drastically higher over the next 10 years.

Battery Pack Materials

Whilst the energy density improvements of Li-ion cells might be the most prominent battery improvements in the public eye, we are also seeing an increase in pack-level energy density at a greater rate than just cell-level improvements. Manufacturers are improving their battery designs; the mass of materials being used around the cells is steadily being reduced, allowing for a lighter battery pack or more cells to be used for the same mass. The choice of materials for several pack components also affects these improvements. More interest is being paid to composite enclosures for light-weighting, fire-retardant materials, thermal interface materials, and much more. The thermal management strategy also impacts these choices; with increased energy density and consumer demand for fast charging, thermal management has to be more effective but also present a smaller and lighter package. Several materials see a decrease in utilization per vehicle, but this is often overshadowed by the rapidly growing market for EVs.

Battery Material

Over 160 BEV & PHEV models are analyzed for energy density and thermal management. Full data is available in the IDTechEx report Materials for EV Battery Cells and Packs 2021-2031” (www.IDTechEx.com/EVBattMat)

In the report “Materials for EV Battery Cells and Packs 2021-2031”, an extensive database collated by IDTechEx of over 300 battery-electric and plug-in hybrid passenger car variants is used to determine trends in the battery cell and pack energy density, energy capacity, cell geometry, cell chemistry, and thermal management strategy, leading to a comprehensive set of material demands and market value forecasts.

Previous article 2021: The Year Of The Gripping Hand
Next article Women Accounted For All Job Losses In December
Jacob Wolinsky is the founder of ValueWalk.com, a popular value investing and hedge fund focused investment website. Jacob worked as an equity analyst first at a micro-cap focused private equity firm, followed by a stint at a smid cap focused research shop. Jacob lives with his wife and four kids in Passaic NJ. - Email: jacob(at)valuewalk.com - Twitter username: JacobWolinsky - Full Disclosure: I do not purchase any equities anymore to avoid even the appearance of a conflict of interest and because at times I may receive grey areas of insider information. I have a few existing holdings from years ago, but I have sold off most of the equities and now only purchase mutual funds and some ETFs. I also own a few grams of Gold and Silver

No posts to display