Satellites Link Texas Earthquake To Oil/Gas Waste Disposal by Ker Than-Stanford
The largest earthquake every recorded in East Texas was caused by humans, according to new satellite measurements.
Scientists say injection of large volumes of wastewater from oil and gas activities underground caused the 4.8 magnitude quake and strong aftershocks. The 2012 quake damaged buildings and rattled residents near the town of Timpson, Texas.
“Our research is the first to provide an answer to the questions of why some wastewater injection causes earthquakes, where it starts and why it stops,” says William Ellsworth, a geophysics professor at Stanford University and coauthor of the study published in Science.
Texas Earthquake
Ellsworth and his coauthors used a remote sensing technique called Interferometric Synthetic Aperture Radar, or InSAR, to measure ground deformations near the wells in East Texas where the quake occurred. InSAR satellites use radar to detect tiny, centimeter-scale changes in the shape of Earth’s surface.
How fracking leads to micro earthquakes
“Our study reports on the first observations of surface uplift associated with wastewater injection,” Ellsworth says. “The detection of uplift when combined with well-injection records provides a new way to study wastewater injection.”
The team focused on four high-volume wells used for disposing wastewater near Timpson. The four wells began operations between 2005 and 2007 and at their peak injected about 200 million gallons of wastewater per year underground.
Texas Earthquake – 180,000 disposal wells in the US
Brackish water naturally coexists with oil and gas within the Earth. After extracting this slurry using hydraulic fracturing or other techniques, drilling companies separate the “produced water” from the oil and gas and then reinject it into Earth at disposal wells.
Approximately 180,000 of these disposal wells are currently in operation in the United States, primarily in Texas, California, Oklahoma, and Kansas.
Approximately 180,000 of these disposal wells are currently in operation in the United States, primarily in Texas, California, Oklahoma, and Kansas.
“You can think of the wastewater as ancient ocean water,” Ellsworth says. “It’s too salty and too contaminated with other chemicals to treat economically, so the only viable solution at present is to put it back underground.”
But where that wastewater is injected can make a huge difference.
Injecting wastewater at a depth of over 1 mile, two of the wastewater disposal wells the scientists examined lie directly above where the earthquake occurred. The other two wells injected similar volumes of wastewater, but at shallower depths, just over a half mile below the surface.
The InSAR measurements revealed that wastewater injection at the shallow wells resulted in detectable ground uplift up to 5 miles (8 kilometers) away but only a modest rise in pore pressure, which is the pressure of fluids within the fractures and cavities of rocks, at the depth at which earthquakes happen 2 or more miles below the surface.
Increasing pore pressure within a geologic fault can cause the two sides of the fault to slip and release seismic energy as an earthquake.
Texas Earthquake – What happened
This did not happen at the shallow well sites in East Texas because a thick layer of nearly impermeable rock beneath the injection sites of the shallow wells prevented the pore pressure from migrating downward towards the crystalline basement, a deep and faulted rock layer where earthquakes originate.
Instead, the injected wastewater caused a subtle uplift of several centimeters over a broad area around the injection wells.
The situation was different at the deep-well injection sites. There, the combination of stiffer rock and the impermeable “blocking formation” above allowed the rising pore pressure to migrate downward and build up until it triggered earthquakes in 2012 along an ancient fault line.
Size of manmade earthquakes gets bigger over time
The quakes ended in late 2013, when pressures began to decline after wastewater injections were scaled back considerably.
The new findings highlight the importance of understanding the local geology for wastewater injection operations, the scientists say. “The recent upturn in seismicity in Oklahoma and Kansas commonly happens where injection occurs close to the crystalline basement, so we’re getting lots of earthquakes in those places,” Ellsworth says. “Injecting at shallower depth above a blocking formation would reduce the ability of the pore pressures to migrate to the basement and activate the faults.”
The research also demonstrates the potential of remote sensing for understanding how and where pressure changes move through Earth.
“Moving forward, we need to predict where pressures will increase in order to reduce the potential for inducing earthquakes,” Ellsworth says. “Our research uncovers new possibilities for operating wells in ways that reduce earthquake hazard.”
Scientists from Arizona State University, University of Colorado Boulder, University of Liverpool, and University of California, Berkeley collaborated on the project.
Source: Stanford University
Original Study DOI: 10.1126/science.aag0262