Technology Pioneer Helping To Create Scalable Blockchain

Technology Pioneer Who Scaled The Internet Is Now Helping Blockchain Do The Same

Scalable Blockchain
jaydeep_ / Pixabay

Two innovative technologies, LISP and Nexus, have come together to create a one-of-a-kind scalable blockchain that many believe is the next generation blockchain solution the industry has been waiting for. LISP (Locator/ID Separation Protocol) was created by Silicon Valley’s, Dino Farinacci, to revolutionize scaling the Internet. The Nexus Hybrid Blockchain is being developed by twenty-eight year old Founder, Colin Cantrell, to solve the challenges of first generation blockchain architecture. Together, these two pioneers are advancing blockchain technology on the network layer in a way that has never been done before.


Q1 hedge fund letters, conference, scoops etc

Dino, is a software engineer and the largest individual contributor to running code on the Internet. He was the first ever Cisco Fellow appointed in 1997 and currently holds over 40 Internet and networking related patents. For the last 30 years, Dino has been a member of the Internet Engineering Task Force (IETF), which develops standards for the Internet we use every day. When Dino left Cisco in 2012, he wanted to pursue and focus on next generation use-cases for this new LISP technology. LISP is currently being used by tech giants such as Comcast, Bloomberg, NBC and Cisco.

In 2017, he met the Nexus founder Colin Cantrell, who is a self taught coder creating a blockchain from the ground up. Dino recognized the blockchain community was neglecting the real value of the network layer, making the same mistakes that were made when designing the Internet. Nexus was open to experiment, trial, and deploy a LISP overlay, while Dino was eager to apply his networking experience to blockchain. The collaboration between Dino and Nexus was a perfect fit. Two years later, what started out as a passion project for Dino, is now the next generation scalable blockchain set to release this summer. Nexus Director of Business Development, Brian Vena said, “What Dino and Colin have created not only advances blockchain technology, but it will heavily impact our daily lives when it comes to the future of IoT and 5G. It also finally provides businesses a cost effective way to integrate a scalable blockchain solution with their current systems through easy to use plug and play APIs and advanced contracts that can be written in any coding language.”

The original Internet architecture was not built to handle the growing number of devices being used around the world or their ability to roam. This same architecture has now run out of IPv4 addresses (the internet equivalent of phones numbers) which are required for devices and services to connect to the Internet. In order to solve this problem, Dino built the LISP overlay architecture to support both IPv4 and IPv6 addresses which will help make the Internet scale. With LISP, separating identity and location changes how you use the Internet. It allows you to roam, use multiple connections at one time and scale the core of the Internet. Scaling the core of the Internet is crucial so it can grow and support more devices and newer applications that are coming. “Today, people want performance, scale and accountability, and that’s exactly what LISP and the Nexus Hybrid Blockchain create together,” said Dino.

Nexus is the only blockchain using LISP, allowing it to scale along with the future advancements of the Internet and the new devices that connect to the network. The addition of LISP gives Nexus a scaling advantage by selecting the shortest paths between locations of Nexus nodes, allowing them to be located anywhere on the Internet, along with residential environments, cloud providers and mobile carriers. Using LISP also allows Nexus connections to remain active while the node moves around or temporarily goes off the network so re-connection and application state synchronization can be avoided. This increases the speed and performance of a Nexus node that no other blockchain in the world has.

The integration of Nexus and the LISP overlay also helps achieve scalability through reduced network latency in a truly unique manner. Just like the Internet, the 32-bit IPv4 address used by most network protocols will be unable to support the future growth of networked devices. Nexus and the LISP overlay will use 128-bit IPv6 EID addresses that can accommodate far more devices on the network. When asked about the future of LISP and Nexus, Dino believes the partnership will take advantage of more LISP features such as multi-homing, mobility, better security through the LISP mapping system’s access control features, crypto-EIDs for anti-spoofing and multicast miner pools. Dino says, “What the LISP layer provides you is an up to date network database and the Nexus Blockchain provides you with an immutable tracking database, the two can be used to provide robust and comprehensive data analytics. This is a data lake of information for machine learning models at multiple layers in the software stack that we have never seen before.”

Nexus has spent the last two years meeting with key executive decision makers and gathering market research in the areas of fraud, supply chain, digital rights and identity. This information has led Nexus to adapt their technical architecture and build a hybrid blockchain solution that allows businesses to utilize the benefits of both a public and private blockchain. The Nexus architecture solves the challenges of scalability and integration for a vastly improved user experience. APIs allow advanced contracts to be written in any language, ensuring easy integration, reduced development costs and a more efficient developer experience. With the Nexus mainnet set to release this summer, businesses looking for alternatives to first generation blockchains will now have a viable solution through the combination of Nexus and LISP.

Article by John Saviano, Nexus

For more information on Nexus and LISP, please visit:

Read Dino’s book, “The LISP Network: Evolution to the Next-Generation of Data Networks