U.S. Smart Beta Crowding

U.S. Smart Beta Crowding

Rapid asset flows into smart beta strategies have led to concerns about froth and a vigorous debate among systematic portfolio vendors. At the same time, few discussions of smart beta crowding are burdened by data on the aggregate risk of smart beta strategies. This article attempts to remedy this data vacuum. We survey the risk factors and the stocks responsible for Q2 2017 U.S. smart beta crowding. In doing so, we identify the exposures that would benefit the most from further asset flows into smart beta portfolios and those that would suffer the most from any outflows:

  • The most crowded factor (systematic) exposures are short Size (overweight smaller companies) and short (underweight) Technology Factors.
  • The most crowded residual (idiosyncratic, or stock-specific) exposures are short (underweight) FAANG stocks.
  • Factor exposures to dumb factors account for over 80% of smart beta crowding.

Get The Timeless Reading eBook in PDF

Get the entire 10-part series on Timeless Reading in PDF. Save it to your desktop, read it on your tablet, or email to your colleagues.

Also read:

  • Fund of funds Business Keeps Dying
  • Baupost Letter Points To Concern Over Risk Parity, Systematic Strategies During Crisis
  • AI Hedge Fund Robots Beating Their Human Masters

Our findings refute many common beliefs about smart beta crowding.

Corsair Took A Hit From Small-Cap Underperformance In Q3; Says Evergrande Not The Next Lehman Brothers

Corsair CapitalCorsair Capital was down by about 3.5% net for the third quarter, bringing its year-to-date return to 13.3% net. Corsair Select lost 9.1% net, bringing its year-to-date performance to 15.3% net. The HFRI – EHI was down 0.5% for the third quarter but is up 11.5% year to date, while the S&P 500 returned 0.6% Read More

It follows that the vigorous performance of Technology shares and FAANG stocks specifically has been in spite of, rather than due to, the asset flows into smart beta strategies. Instead, the principal beneficiaries of such inflows and the most crowded smart beta bet have been smaller companies. Smart beta strategies tend to overweight smaller companies relative to the passive (capitalization-weighted) Market Portfolio. Consequently, smaller companies are most at risk should the flows into smart beta reverse. Given its importance, allocators and portfolio managers should pay particular attention to this Size Factor crowding.

Identifying Smart Beta Crowding

This article applied AlphaBetaWorks pioneering analysis of Hedge Fund Crowding to U.S. smart beta equity ETFs. We aggregated the positions of over 300 U.S. smart beta equity ETFs with approximately $700 billion in total assets. We combined all portfolios into a single position-weighted portfolio – U.S. Smart Beta Aggregate (USSB Aggregate). We then used the AlphaBetaWorks (ABW) Statistical Equity Risk Model an effective predictor of future risk – to analyze Smart Beta ETF Aggregate’s risk relative to the iShares Russell 3000 ETF (IWV) benchmark. The benchmark is a close proxy for the passive U.S. Equity Market portfolio.

We find that a small number of active bets are behind the aggregate risk and performance of U.S. smart beta ETFs. Our analysis assumes that the U.S. Smart Beta ETF Universe is a good proxy for the total smart beta strategy universe. In this case, the analysis captures the overall U.S. smart beta crowding.

Factor and Residual Components of U.S. Smart Beta Crowding

USSB Aggregate has approximately 1% estimated future volatility (tracking error) relative to the Market. Over 80% of this relative risk is due to factor exposures, or factor crowding. This high share of factor crowding is consistent with our earlier findings that the bulk of absolute and relative risk of most smart beta ETFs is due to traditional, or dumb, factors such as Market and Sectors:

Components of U.S. Smart Beta Crowding in Q2 2017

Source Volatility (ann. %) Share of Variance (%)
Factor 0.84 82.45
Residual 0.39 17.55
Total 0.92 100.00

Given how close the aggregate smart beta ETF portfolio is to the Market, closet indexing is a concern, especially for diversified smart beta portfolios. The little active risk that remains is primarily due to the two dumb factor exposures discussed below.

U.S. Smart Beta Factor (Systematic) Crowding

The following chart shows the main factor exposures of USSB Aggregate as of 6/30/2017 in red relative to U.S. Market’s exposures in gray:

U.S. Smart Beta Crowding

Significant Absolute and Relative Factor Exposures of U.S. Smart Beta Aggregate in Q2 2017

The main active bet of the smart beta universe is short exposure to the Size Factor (overweighting of smaller companies). Thus, smart beta crowding largely consists of a bet against market-cap weighting and in favor of smaller companies. This crowded bet is the natural consequence of most modified-weighting schemes that de-emphasize larger companies.

U.S. Smart Beta Crowding

Factors Contributing Most to Relative Factor Variance of U.S. Smart Beta Aggregate in Q2 2017

Factor Relative Exposure Factor Volatility Share of Relative Factor Variance Share of Relative Total Variance
Size -5.58 9.62 42.83 35.31
Technology -6.85 6.39 40.74 33.59
Utilities 1.88 12.72 7.44 6.14
Energy 0.84 13.06 4.73 3.90
Real Estate 0.99 12.40 3.79 3.13
Industrials 1.22 4.72 2.67 2.20
FX 2.49 6.77 2.46 2.03
Materials 0.80 7.88 1.39 1.15
Financials -1.28 7.90 -1.70 -1.40
Value -1.08 15.20 -4.04 -3.33

(Relative exposures and relative variance contribution. All values are in %. Volatility is annualized.)

The short Size Factor smart beta crowding accounts for approximately twice the risk of stock-specific crowding. Consequently, smaller companies stand to lose, and larger companies stand to benefit, on average, from smart beta strategy outflows. The short (underweight) Technology bet is nearly as important.

U.S. Smart Beta Residual (Idiosyncratic) Crowding

The remaining fifth of U.S. smart beta crowding as of 6/30/2017 was due to residual (idiosyncratic, stock-specific) risk:

U.S. Smart Beta Crowding

Stocks Contributing Most to Relative Residual Variance of U.S. Smart Beta Aggregate in Q2 2017

Symbol Name Relative Exposure Residual Volatility Share of Relative Residual Variance Share of Relative Total Variance
AAPL Apple Inc. -1.43 13.37 24.43 4.29
FB Facebook, Inc. A -0.67 24.17 17.39 3.05
AMZN Amazon.com, Inc. -0.74 18.23 12.17 2.13
GOOGL Alphabet Inc. A -0.52 12.83 3.04 0.53
MSFT Microsoft Corporation -0.56 11.78 2.96 0.52
GOOG Alphabet Inc. C -0.54 10.72 2.25 0.39
BRK.B Berkshire Hathaway B -0.69 7.55 1.82 0.32
BAC Bank of America Corporation -0.46 11.08 1.77 0.31
CASH Meta Financial Group 0.22 22.74 1.68 0.29
NFLX Netflix, Inc. -0.11 40.32 1.23 0.21

(Relative exposures and relative variance contribution. All values are in %. Volatility is annualized.)

The main source of residual U.S. smart beta crowding is short (underweight) exposure to AAPL, FB, AMZN, and GOOGL – the principal members of the FAANG club. The Strong performance of these stocks has been despite, rather than due to, flows into smart beta strategies. On a relative basis, FAANGs have suffered from smart beta asset inflows and, all else equal should outperform in the case of outflows from smart beta strategies.


  • Factor (systematic) exposures that capture risks shared by many stocks, rather than individual stocks, are responsible for over 80% of U.S. smart beta crowding.
  • The most crowded smart beta bet is short Size Factor exposure (overweighting of smaller companies). Thus, smaller companies stand to lose from smart beta strategy outflows.
  • The most crowded residual smart beta bet is short exposure to (underweighting of) FAANG stocks. Therefore, FAANG stocks should be relative beneficiaries of any smart beta outflows.

The information herein is not represented or warranted to be accurate, correct, complete or timely.

Past performance is no guarantee of future results.

Copyright © 2012-2017, AlphaBetaWorks, a division of Alpha Beta Analytics, LLC. All rights reserved.

Content may not be republished without express written consent.

Article by AlphaBetaWorks Insights

Updated on

AlphaBetaWorks provides risk management, skill evaluation, and predictive performance analytics. Developed by finance and technology veterans, our proprietary platform combines the latest advances in financial risk modeling, data processing, and statistical analysis. Our Risk Analytics are more robust than alternatives and our Skill Analytics are predictive. Risk Analytics AlphaBetaWorks pinpoints risks missed by other offerings and delivers unique insights. AlphaBetaWorks Risk Analytics were developed by investment professionals seeking usability and a deeper understanding of portfolio exposures. Predictive Performance Analytics Starting with robust, proprietary risk models, AlphaBetaWorks adds layers of attribution and statistical analysis. Our Skill Analytics describe a multitude of specific skills that are strongly predictive of future returns for any fund, manager, or analyst with a sufficient sample of investment history. The AlphaBetaWorks Advantage Our Risk and Performance Analytics provide unique insights: For portfolio managers, we identify overlooked exposures, hidden risk clusters, and crowded bets. Managers can focus on risks in areas where they have proven ability to generate excess returns and avoid undesired risks in areas where they do not. For fund allocators, we identify the skills, crowding, and hidden portfolio bets of individual funds and portfolios of funds. Allocators can identify differentiated and skilled managers that are deploying capital in areas of proven expertise – and more importantly, those that are not. Background As finance professionals, we spent the last decade focused on fundamental investment analysis and the study of great (and seemingly great) investment managers. We asked of ourselves: Where are the unintended risks in a portfolio? What is the chance that a manager possesses true investment skill and was not just lucky? Does investment skill persist and is past skill a predictor of future results? There was no product, service, or technology that rigorously and consistently answered these questions. With decades of fundamental investment analysis, risk management, mathematics, and technology expertise, AlphaBetaWorks professionals have developed risk and skill analytics to address these and related questions.
Previous article Amazon Said To Be Developing Alexa-Powered Smart Glasses [REPORT]
Next article 8 Exceptional Investing Lessons That Have Stood The Test Of Time – Philip Fisher

No posts to display