Are Crystals The Way To Create Energy-Saving Cement?

Are Crystals The Way To Create Energy-Saving Cement?

Are Crystals The Way To Create Energy-Saving Cement? by Mike Williams-Rice

Material scientists working to develop a deeper understanding of the world’s most widely used man-made material—concrete—have detailed previously unexplored aspects that affect the energy required to make it and the greenhouse gases released.

New techniques not only allow for analysis, but also show dislocations in dicalcium silicates (aka belite), a component of Portland cement, and detail how each of five distinct types contributes to concrete’s ease of manufacture and ultimate strength.

This Top Energy And Infrastructure Fund Is Bullish On U.S. Utilities

UtilitiesThe Electron Global Fund was up 2% for September, bringing its third-quarter return to -1.7% and its year-to-date return to 8.5%. Meanwhile, the MSCI World Utilities Index was down 7.2% for September, 1.7% for the third quarter and 3.3% year to date. The S&P 500 was down 4.8% for September, up 0.2% for the third Read More

“Though belite is crystalline in nature, the crystals are so small and the material so amorphous that nobody has looked at them with the kind of analytical eye they deserve,” says materials scientists Rouzbeh Shahsavari of Rice University.

Energy-Saving Cement

But fine-tuning them for use in the cement that holds concrete together can help save energy, which in turn leads to a reduction in carbon emissions. The lab’s report is published in the journal Cement and Concrete Research.

“Putting an atomistic lens on the role of defects on the mechanics and water reactivity of belite crystals can provide new insights on how to modulate the grinding energy of cement clinkers and strength development of concrete,” Shahsavari says. “Both of these factors can significantly contribute to energy saving and reduced environmental footprints due to the use and manufacture of concrete.”

Is secret to Roman concrete in volcanic rock?

Calcium silicates are a key ingredient in industrial clinkers, which are ground and mixed with water to make cement. Compared with tricalcium silicate, the more dominant ingredient in cement, belite can be produced at a much lower temperature. This temperature is at least 100 degrees Celsius (212 degrees Fahrenheit) lower and makes belite an economical trade.

However, it is harder to grind and reacts more slowly with water, which leads to delayed strength development in cement paste. These issues have curbed the widespread use of belite-based cement in concrete, but a new approach could bring change.

Belite crystals of calcium, silicon, and oxygen mainly take one of two different forms, either monoclinic or orthorhombic, each of which behaves differently at the atomic level. Researchers subdivided those into five distinct polymorphic crystals. Through computer simulations and high-resolution electron microscopy, they determined one of the monoclinic forms, dubbed beta-C2S, is the most brittle and possibly the best-suited for cements requiring low-energy manufacture.

The research provides new insight about the bottom-up engineering of materials that have the properties of cement, Shahsavari says.

“The physical understanding gained by our high-resolution electron microscopy images, the first of their kind for cement, combined with our atomistic-level computations, can put cement-based materials on equal footing with metallic systems and semiconductors in the emerging application of ‘defect-engineering’ to boost performance in manufacturability and functionality,” he says. “We expect this will lead to energy savings and environmental benefits.”

The National Science Foundation supported the research.

Source: Rice University

Original Study DOI: 10.1016/j.cemconres.2016.09.012

Updated on

No posts to display