Electrical “Muscles” Could Move Tiny Robots Through Veins

Electrical “Muscles” Could Move Tiny Robots Through Veins
DrSJS / Pixabay

As well as powering the tiny robots, which are smaller than a grain of sand, the particles could be used in electronics which are capable of automatically rewiring themselves. The robots could swim through the human body to combat disease or defuse bombs by crawling inside them.

Writing in the journal Nature Materials, study co-author Michael Solomon, a chemical engineer at the University of Michigan, said: “They could work together and go places that have never been possible before.”

This mining and metals fund is having a strong year so far

Cubic Corporation Chris Hohn favorite hedge fundsThe Delbrook Resources Opportunities Master Fund was up 9.2% for May, bringing its year-to-date return to 33%. Q1 2021 hedge fund letters, conferences and more Dellbrook is an equity long/ short fund that focuses exclusively on the metals and mining sector. It invests mainly in public companies focused on precious, base, energy and industrial metals Read More

Tiny Robots: challenges ahead

Both building and making the robots mobile present huge challenges. “If you imagine a microscale robot in the future, it would need ways to move autonomously and it would need to be able to exert forces, by pushing or pulling on other objects,” he continued.

The scientists first made particles which were the shape of rice grains, but just 0.6 microns wide and 3 microns in length, compared to the average human hair which is around 100 microns wide. One side of each particle was then coated in gold, which meant that the particles attracted each other when placed in salt water to form short chains of overlapping pairs. These chains elongated indefinitely when exposed to alternating electric current.

Tiny Robots: Future possibilities

Researchers have postulated that the fibers could act as muscles by expanding and contracting, and called the degree of control that they have over the chains “exciting.”

“The findings point the way toward a new class of reconfigurable materials made of micron-size particles — materials that can be triggered to morph and change shape in response to changes in environment or on demand,” said researcher Sharon Glotzer.

The fibers generate a force around 1,000 times weaker than human muscle per unit measure, but this could be sufficient for microbots. Further research is required in order to group the chains into bundles, which would allow them to “lift loads, move around, do things that biological muscles do.”

The researchers have predicted that functional microbots powered by this method are a long time away, but electronics which reconfigure themselves are a more eminent possibility.

Previous article Alibaba Group Holding Ltd Singles' Day Sales Top $9.34 Billion
Next article Twitter Inc (TWTR) Analyst Day: What To Expect
While studying economics, Brendan found himself comfortably falling down the rabbit hole of restaurant work, ultimately opening a consulting business and working as a private wine buyer. On a whim, he moved to China, and in his first week following a triumphant pub quiz victory, he found himself bleeding on the floor based on his arrogance. The same man who put him there offered him a job lecturing for the University of Wales in various sister universities throughout the Middle Kingdom. While primarily lecturing in descriptive and comparative statistics, Brendan simultaneously earned an Msc in Banking and International Finance from the University of Wales-Bangor. He's presently doing something he hates, respecting French people. Well, two, his wife and her mother in the lovely town of Antigua, Guatemala. <i>To contact Brendan or give him an exclusive, please contact him at [email protected]</i>

No posts to display