Forecast 2014: The Human Transformation Revolution by John Mauldin

Updated on

sharing, the transfer of knowledge have all been fundamental in the human experiment. The more open a society becomes, the more it shares its information and knowledge and the fruits of its labors, and the more empowered its people and the more productive its civilization become.

As Isaac Newton said, “If I have seen further it is by standing on the shoulders of giants.” In Newton’s time, there were a handful of giants; today there are thousands. And because of their ubiquity, most go unnoticed. The division of labor, the most significant of Adam Smith’s insights, means that there are just so many more small but important realms of human endeavor where giants can roam and have an impact. When was the last time we celebrated the giants of material sciences? Who are the Newtons of the world of ceramics? We may not be able to name them, yet their work has a profound impact on our lives. I daresay that our Killer Robot would not be possible without their seminal work. Or the work of thousands of other innovators.

Yet those insights can walk out of a company at any moment. Ask Shockley Semiconductor (who, you ask? – which is the point) about losing Gordon Moore to Fairchild. Then Fairchild saw Gordon Moore leave to found Intel. It is the human capital that is truly important.

It is human drive and determination and the ability to piece together disparate bits of information, along with the ability to develop and deploy an ever-increasing abundance of new tools, that is driving economic growth. They were fracking shale oil in the Permian Basin in the early 1950s. And fracking went nowhere until George Mitchell worked on the problem in the 1980s and ’90s. And there are now hundreds of significant innovations and tens of thousands of scientists and engineers working in just that one small field of human endeavor that was pioneered by Mitchell.

he Age of Transformation

The next twenty years will see more technological change than we have seen in the last hundred years put together. My Dad would hitch up the wagon to drive seven miles to town in the 1920s. In twenty years the way we get around today will look just as quaint, though in different ways. Who was using the internet twenty years ago? Only early adopters had cell phones. The Human Genome Project was seen as an expensive joke unlikely to be completed in less than a few decades. Twenty years ago, robots were still very limited in scope, and AI had lost its mojo in the public eye. Only a few years earlier a serious Stanford physics professor said Qualcomm’s technology violated the laws of physics and was a hoax.

Back then, Paul Krugman told us,

The growth of the Internet will slow drastically, as the flaw in “Metcalfe’s law” – which states that the number of potential connections in a network is proportional to the square of the number of participants – becomes apparent: most people have nothing to say to each other! By 2005 or so, it will become clear that the Internet’s impact on the economy has been no greater than the fax machine’s…. As the rate of technological change in computing slows, the number of jobs for IT specialists will decelerate, then actually turn down; ten years from now, the phrase information economy will sound silly.

Not that I want to pick only on Krugman; he was expressing a widely held sentiment (although it’s one I am sure you did not share – just those other guys who had no idea what the future held).

The true power of the internet is not just in human conversation. That is such an anthropomorphic view. It’s also about what machines can communicate to one another for us; it’s about distributed computing power. But that power is easy to underestimate or dismiss entirely, because most of us cannot imagine what the increases in processing power or network connectivity and speed or nanotech or (pick a technology) can do for us. But we don’t have to. Those ten million entrepreneurs lie awake nights thinking about those things for us.

Nowhere else is the pace of scientific progress accelerating as fast as it is in the biological sciences. Already, biotech advances have outstripped the media’s ability to stay abreast of important breakthroughs. This isn’t surprising, as even scientists who work in one area are often unaware of major developments in other areas. One of the problems of the current explosion of information is the difficulty of simply keeping up with what is going on in your own field, let alone others. One of the new and important job descriptions is that of the generalist who can extrapolate and interpolate technological advances among disparate fields.

The gap between public perception and scientific progress will only increase as exponential advances in computer technologies give researchers powerful new tools to solve mysteries long thought unsolvable. Nothing better demonstrates the acceleration of biotechnology than the following chart from the National Human Genome Research Institute. You probably know that the cost of computer processing power is cut in half every two years or so. That is (Gordon) Moore’s Law. You may not know, however, that the cost of mapping an individual human genome is dropping at twice that rate.

clost

What does this mean? It means that more and more genomes will be sequenced and matched to individuals’ medical histories. As this database grows, advanced mathematical tools running on increasingly powerful computers will reveal genetic causes for diseases as well as individualized solutions. Truly effective personalized medicine will finally displace primitive cookie-cutter therapies.

Today a note came across my desk. A research group at Tel Aviv University has developed a computer algorithm that detects which genes can be “turned off” to create the same anti-aging effect as calorie restriction. Laboratory results confirmed the research done by computers, totally in silicon! This sort of work was not physically possible ten years ago, even in the most specialized labs. Now it is performed inside a computer without anyone even having to reach for a test tube. This is biotech research at the speed of light, powered by Moore’s Law. Today we do in mere days research that required years and massive amounts of money just ten years ago.

Reading and interpreting the DNA found in your cells, however, is only half of the story. The other half is harnessing your own DNA to repair and replace cells damaged by trauma, disease, or aging itself. The most powerful therapies will analyze and utilize your own cells and DNA.

This is why my colleague Patrick Cox (who writes our Transformational Technology Alert letter) and I volunteered to participate in a pilot project conducted by BioTime, Inc. We both donated cells taken from inside our left arms. Those cells were then multiplied many thousand of times.

Some of these cells were used for complete genome sequencing. The results are, in fact, posted here for John and here for Patrick.

This public posting of our genomes is somewhat historic for a number of reasons. One is that our genomes are linked with the world’s most comprehensive library of genetic information, GeneCards, which is maintained by BioTime subsidiary LifeMap Sciences, in conjunction with the Weizmann Institute in Tel Aviv. In essence, LifeMap Sciences tracks and integrates all publicly known scientific information about the genome in this searchable database. Just a few weeks ago I was in a hotel lobby with BioTime CEO Mike West here in Dallas, and we were able to look at my genome results and see hundreds of links to research papers and a synopsis of what the research says about my particular genes. The web pages above have partial postings of our genome results today but in time will have full postings.

There were good news/bad news aspects to my genes. The good news is that both Patrick and I have a relatively rare gene associated with Ashkenazi Jews that, along with some other genes, suggests we have a propensity to live a rather long time. (One of the researchers asked if we had such ancestry. For what it’s worth, neither of us do.)

Since my mother is now 96, a gene that is associated with longevity is not much of a surprise. Patrick’s grandfather made it past 100. But the bad news is that I have several genes that are associated with a 3-6 times higher rate of multiple sclerosis and other genes associated with certain types of cancers. I will no longer argue with my doctor about that annoying prostate exam. And there are some weird genes in my mix. Who actually studies whether having a particular gene means you get larger mosquito bites? I apparently have one.

As time goes by, Patrick and I will learn more as LifeMap Sciences posts finds ever more research and links it to their database. Pat good-humoredly asked if I worry about someone cloning me in 100 years, since all the data will be there. I laughed and said, “I really don’t care, but I would suggest they make some serious modifications to the original.”

Given the trouble that 23andMe has recently had with the FDA, it should be pointed out that there are big differences between what that company did and what BioTime has done. First, 23andMe did a partial sequencing based on a saliva test, which is very different from a full sequencing using skin cells. Additionally, BioTime has not issued any statements or made any diagnoses that the FDA has halted. This isn’t surprising, as ex-FDA chief Andrew von Eschenbach serves on the BioTime board. Patrick and I are free to use the GeneCards database to research our full genomes, but we would need a doctor or other clinician to make a diagnosis.

By the way, I asked Mike what it cost to run our genomes. He had to think a moment and guessed about $4,000. (I assume that is his cost.) For Mike the cost is clearly not even a consideration in his research. And it is dropping every year, almost monthly. The first human genome was fully sequenced less than a decade ago. The project took 13 years and cost $2.7 billion. That is an almost millionfold reduction in cost in a little over a decade. The first individual’s genome (the previous genome maps had been composites) – Craig Venter’s – was sequenced just six years ago, in 2007.

An even bigger difference, and far more important, between BioTime’s model and 23andMe’s is that our cells were not only used to provide the DNA for sequencing, they were also rejuvenated and banked. Our skin cells were turned into induced pluripotent stem cells, which are virtually identical to the embryonic cells that we came from. This means that our cells’ telomeres – the actual clock of aging – are completely restored to their full length at birth. If transplanted back to us, the donors, they would function as well as youthful cells and have full, normal lifespans, unlike adult stem cells used in therapies now.

These rejuvenated stem cells have only our DNA, so they would provoke no immune reaction if returned to us. Moreover, they can be stored in this newborn state indefinitely; because until they start down the path to becoming an adult cell type (the process of differentiation), they don’t age at all.

To demonstrate the differentiation process, BioTime CEO Dr. Michael West had some of Pat’s cells programmed to become heart muscle cells, or cardiomyocytes. He did this because their function is apparent to the naked eye. These cells naturally self-assemble into clumps of beating heart muscle.

clost

It’s useful to ponder the fact that these cells are baby-young. Scientists believe, based on successful animal tests, that they could be used to repair damaged heart muscle following a heart attack. BioTime’s subsidiary ReCyte is also working on endothelial precursor stem cells. If these cells were to be programmed from your own induced pluripotent stem cells and returned to you, they would form a youthful endothelium – the lining of your cardiovascular system. This would rejuvenate your cardiovascular system and help protect you from heart disease and other life-threatening conditions. Talk about healthcare with a lifetime warranty!

The types of rejuvenated cells that could be used to reverse cellular aging in your body are unlimited. Already, BioTime has learned to engineer

Leave a Comment